Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 25 - Electric Charges and Forces - Exercises and Problems - Page 746: 27

Answer

See the detailed answer below.

Work Step by Step

We know that the electric field for a positive charge is given by $$\vec E=\dfrac{kq}{r^2} \;\hat r$$ where $\hat r$ is the unit vector in the direction of the electric field. So to find the electric field at the three given points, we need to sketch them as seen below. Hence, $$\vec E_A= \dfrac{kq}{r^2}\;\cos\theta_A \;\hat i+\dfrac{kq}{r^2}\;\sin\theta_A\;\hat j$$ $$\vec E_A= \dfrac{(8.99\times 10^9)(-12\times 10^{-9})}{(4\times 10^{-2})^2}\cos0^\circ\;\hat i+\\ \dfrac{(8.99\times 10^9)(-12\times 10^{-9})}{(4\times 10^{-2})^2}\;\sin0^\circ\;\hat j$$ $$\vec E_A=(\color{red}{\bf -6.74\times 10^4}\;{\rm N/c})\hat i$$ By the same approach, $$\vec E_B= \dfrac{(8.99\times 10^9)(-12\times 10^{-9})}{(4\times 10^{-2})^2}\cos180^\circ\;\hat i+\\ \dfrac{(8.99\times 10^9)(-12\times 10^{-9})}{(6\times 10^{-2})^2}\;\sin180^\circ\;\hat j$$ $$\vec E_B=(\color{red}{\bf 3.0\times 10^4}\;{\rm N/c})\hat i$$ And, $$\vec E_C= \dfrac{(8.99\times 10^9)(-12\times 10^{-9})}{r_C^2}\cos\theta\;\hat i+\\ \dfrac{(8.99\times 10^9)(-12\times 10^{-9})}{r_C^2}\;\sin\theta\;\hat j$$ where $\theta_C=180^\circ-\theta$, so $\sin(180^\circ-\theta)= \sin\theta=\dfrac{y}{r}$, and hence, $\cos(180^\circ-\theta)=-\cos\theta=-\dfrac{x}{r}$. Recall that $r=\sqrt{x^2+y^2}$ $$\vec E_C= \dfrac{(8.99\times 10^9)(-12\times 10^{-9})}{r_C^2}\dfrac{-x}{r_C}\;\hat i+\\ \dfrac{(8.99\times 10^9)(-12\times 10^{-9})}{r_C^2}\dfrac{y}{r_C}\;\hat j$$ $$\vec E_C= \dfrac{-x(8.99\times 10^9)(-12\times 10^{-9})}{r_C^3} \;\hat i+ \dfrac{y(8.99\times 10^9)(-12\times 10^{-9})}{r_C^3} \;\hat j$$ Hence, $$\vec E_C= \dfrac{-x(8.99\times 10^9)(-12\times 10^{-9})}{(x^2+y^2)^\frac{3}{2}} \;\hat i+ \dfrac{y(8.99\times 10^9)(-12\times 10^{-9})}{(x^2+y^2)^\frac{3}{2}} \;\hat j$$ Plug the known; $$\vec E_C= \dfrac{-(0.01)(8.99\times 10^9)(-12\times 10^{-9})}{(0.01^2+0.05^2)^\frac{3}{2}} \;\hat i+ \dfrac{(0.05)(8.99\times 10^9)(-12\times 10^{-9})}{(0.01^2+0.05^2)^\frac{3}{2}} \;\hat j$$ $$\vec E_C=(\color{red}{\bf 8.14\times 10^3}\;{\rm N/c})\hat i+(\color{red}{\bf -4.07\times 10^4}\;{\rm N/c})\hat j$$ ---
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.