Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 21 - Superposition - Exercises and Problems - Page 624: 57

Answer

$7.9\;\rm cm$

Work Step by Step

Since the two identical speakers are placed on the same line then the amplitude of the net wave is given by $$A=2a\cos\left(\dfrac{\Delta \phi}{2}\right)=2a\cos\left(\frac{1}{2}\left[\dfrac{2\pi \Delta x}{ \lambda}+\Delta \phi_0\right]\right)$$ where $\Delta \phi_0=0$ since the speakers are emitting identical waves so they have identical phase constants. $$A= 2a\cos\left(\frac{1}{ \color{red}{\bf\not} 2}\left[\dfrac{ \color{red}{\bf\not} 2\pi \Delta x}{ \lambda}+0\right]\right)=2a\cos\left( \dfrac{ \pi \Delta x}{ \lambda}\right)$$ Recalling that $v=\lambda f$, so $\lambda=v/f$ $$A= 2a\cos\left( \dfrac{ \pi f\Delta x}{ v}\right)$$ We know that the net amplitude at his point is 1.5 times that of each speaker alone, so $A=1.5 a$; $$1.5 \color{red}{\bf\not} a= 2 \color{red}{\bf\not} a\cos\left( \dfrac{ \pi f\Delta x}{ v}\right)$$ Hence, $$\dfrac{3}{4}=\cos\left( \dfrac{ \pi f\Delta x}{ v}\right)$$ $$ \dfrac{ \pi f\Delta x}{ v}=\cos^{-1}\left( \dfrac{3}{4}\right)$$ $$ \Delta x =\dfrac{v}{\pi f}\;\cos^{-1}\left( \dfrac{3}{4}\right)$$ Plugging the known; $$ \Delta x =\dfrac{343}{\pi (1000)}\;\cos^{-1}\left( \dfrac{3}{4}\right)=0.0789\;\rm m$$ $$\Delta x=\color{red}{\bf 7.90}\;\rm cm$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.