Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 21 - Superposition - Exercises and Problems - Page 624: 64

Answer

See the detailed answer below.

Work Step by Step

We will hear a minimum sound intensity when the path length difference between the two sound waves is given by $$\Delta r=\left[m+\frac{1}{2}\right]\lambda$$ where $\lambda=v/f$; $$\Delta r=\left[m+\frac{1}{2}\right]\dfrac{v}{f}\tag 1$$ From the geometry of the given graph, $$\Delta r=r_2-r_1$$ where $r_1=x$, and $r_2=\sqrt{3^2+x^2}$, So $$\Delta r=\sqrt{3^2+x^2}-x$$ Plugging into (1); $$\sqrt{3^2+x^2}-x=\left[m+\frac{1}{2}\right]\dfrac{v}{f} $$ Plugging the known; $$\sqrt{3^2+x^2}-x=\left[m+\frac{1}{2}\right]\dfrac{343}{686} $$ $$\sqrt{3^2+x^2}-x=\frac{1}{2}\left[m+\frac{1}{2}\right]=\frac{1}{2} m+1 $$ Thus, $$\sqrt{3^2+x^2}-x= \frac{1}{2} m+\frac{1}{4} $$ Using any software calculator; At $m=0$, $$x=\color{red}{\bf 17.88}\;\rm m$$ At $m=1$, $$x=\color{red}{\bf 5.63}\;\rm m$$ At $m=2$, $$x=\color{red}{\bf 2.98}\;\rm m$$ At $m=3$, $$x= {\bf 1.7}\;\rm m$$ but this is dismissed since you are moving away from 2.5 m, so you will not be at this point.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.