Chemistry: The Molecular Nature of Matter and Change 7th Edition

Published by McGraw-Hill Education
ISBN 10: 007351117X
ISBN 13: 978-0-07351-117-7

Chapter 18 - Problems - Page 820: 18.72

Answer

$K_a = 2.2 \times 10^{-7} $

Work Step by Step

$$[HX] = \frac{0.250 \space mol}{655 \space mL} \times \frac{1000 \space mL}{1 \space L} = 0.382 \space M$$ 1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ HX ]& [ X^- ]& [ H_3O^+ ]\\ Initial& 0.382 & 0 & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.382 -x& 0 +x& 0 +x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each pressure is equal to its balance coefficient. $$K_a = \frac{P_{Products}}{P_{Reactants}} = \frac{[ X^- ][ H^+ ]}{[ HX ]}$$ $$K_a = \frac{(x)(x)}{[ HX ]_{initial} - x}$$ 3. Using the pH, find the $H_3O^+$ concentration: $$[H_3O^+] = 10^{-pH} = 10^{-3.54} = 2.9 \times 10^{-4} \space M$$ $[H_3O^+] = x = 2.9 \times 10^{-4} $ 4. Substitute the value of x and calculate the $K_a$: $$K_a = \frac{( 2.9 \times 10^{-4} )^2}{ 0.382 - 2.9 \times 10^{-4} }$$ $K_a = 2.2 \times 10^{-7} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.