Chemistry: The Molecular Nature of Matter and Change 7th Edition

Published by McGraw-Hill Education
ISBN 10: 007351117X
ISBN 13: 978-0-07351-117-7

Chapter 18 - Problems - Page 820: 18.76

Answer

(a) pH = 2.290 (b) pOH = 12.699

Work Step by Step

(a) 1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ HY ]& [ Y^- ]& [ H_3O^+ ]\\ Initial& 0.175 & 0 & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.175 -x& 0 +x& 0 +x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each pressure is equal to its balance coefficient. $$K_a = \frac{P_{Products}}{P_{Reactants}} = \frac{[ Y^- ][ H_3O^+ ]}{[ HY ]}$$ $$K_a = \frac{(x)(x)}{[ HY ]_{initial} - x}$$ 3. Assuming $ 0.175 \gt\gt x:$ $$K_a = \frac{x^2}{[ HY ]_{initial}}$$ $$x = \sqrt{K_a \times [ HY ]_{initial}} = \sqrt{ 1.50 \times 10^{-4} \times 0.175 }$$ $x = 5.123 \times 10^{-3} $ 4. Test if the assumption was correct: $$\frac{ 5.12 \times 10^{-3} }{ 0.175 } \times 100\% = 2.93 \%$$ 5. The percent is less than 5%. Thus, it is correct to say that $x = 5.123 \times 10^{-3} $ 6. $$[H_3O^+] = x = 5.123 \times 10^{-3} $$ 7. Calculate the pH: $$pH = -log[H_3O^+] = -log( 5.123 \times 10^{-3} ) = 2.290 $$ (b) 1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ HX ]& [ X^- ]& [ H_3O^+ ]\\ Initial& 0.175 & 0 & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.175 -x& 0 +x& 0 +x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each pressure is equal to its balance coefficient. $$K_a = \frac{P_{Products}}{P_{Reactants}} = \frac{[ X^- ][ H_3O^+ ]}{[ HX ]}$$ $$K_a = \frac{(x)(x)}{[ HX ]_{initial} - x}$$ 3. Assuming $ 0.175 \gt\gt x:$ $$K_a = \frac{x^2}{[ HX ]_{initial}}$$ $$x = \sqrt{K_a \times [ HX ]_{initial}} = \sqrt{ 2.00 \times 10^{-2} \times 0.175 }$$ $x = 0.0592 $ 4. Test if the assumption was correct: $$\frac{ 0.0592 }{ 0.175 } \times 100\% = 33.8 \%$$ The percent is greater than 5%, therefore, the approximation is invalid. 5. Return for the original expression and solve for x: $$K_a = \frac{x^2}{[ HX ]_{initial} - x}$$ $$K_a [ HX ] - K_a x = x^2$$ $$x^2 + K_a x - K_a [ HX ] = 0$$ - Using bhaskara: $$x_1 = \frac{- 2.00 \times 10^{-2} + \sqrt{( 2.00 \times 10^{-2} )^2 - 4 (1) (- 2.00 \times 10^{-2} ) ( 0.175 )} }{2 (1)}$$ $$x_1 = 0.0500 $$ $$x_2 = \frac{- 2.00 \times 10^{-2} - \sqrt{( 2.00 \times 10^{-2} )^2 - 4 (1) (- 2.00 \times 10^{-2} )( 0.175 )} }{2 (1)}$$ $$x_2 = -0.0700 $$ - The concentration cannot be negative, so $x_2$ is invalid. $$x = 0.0500 $$ 6. $$[H_3O^+] = x = 0.0500 $$ 7. Calculate the pH: $$pH = -log[H_3O^+] = -log( 0.0500 ) = 1.301 $$ $$pOH = 14.00 - 1.301 = 12.699$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.