Chemistry: The Molecular Nature of Matter and Change 7th Edition

Published by McGraw-Hill Education
ISBN 10: 007351117X
ISBN 13: 978-0-07351-117-7

Chapter 18 - Problems - Page 820: 18.73

Answer

$K_a = 9.0 \times 10^{-5} $

Work Step by Step

$$[HY] = \frac{4.85 \times 10^{-3}}{0.095 \space L} = 0.0511 \space M$$ 1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ HY ]& [ Y^- ]& [ H_3O^+ ]\\ Initial& 0.0511 & 0 & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.0511 -x& x& x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each pressure is equal to its balance coefficient. $$K_a = \frac{P_{Products}}{P_{Reactants}} = \frac{[ Y^- ][ H^+ ]}{[ HY ]}$$ $$K_a = \frac{(x)(x)}{[ HY ]_{initial} - x}$$ 3. Using the pH, find the $H_3O^+$ concentration: $$[H_3O^+] = 10^{-pH} = 10^{-2.68} = 2.1 \times 10^{-3} \space M$$ $[H_3O^+] = x = 2.1 \times 10^{-3} $ 4. Substitute the value of x and calculate the $K_a$: $$K_a = \frac{( 2.1 \times 10^{-3} )^2}{ 0.0511 - 2.1 \times 10^{-3} }$$ $K_a = 9.0 \times 10^{-5} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.