Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.9 Exercises - Page 1157: 2

Answer

$8 \pi$

Work Step by Step

Divergence Theorem $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_Ediv \overrightarrow{F}dV $ Here, $div F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}$ This implies that $div F=\dfrac{\partial (x^2)}{\partial x}+\dfrac{\partial (xy)}{\partial y}+\dfrac{\partial (z)}{\partial z}=2x+x+1=3x+1$ $I=\int_0^{2 \pi}\int_0^2\int_0^{4-r^2} (3r \cos \theta+1) r dz dr d\theta=\int_0^{2 \pi}\int_0^2\int_0^{4-r^2} [3r^2 \cos \theta+ r] dz dr d\theta$ and $I=\int_0^{2 \pi}\int_0^2 3(4r^2-r^4) \cos \theta+(4r-r^3) dr d\theta=\int_0^{2 \pi}[3(\dfrac{4r^3}{3}-\dfrac{r^5}{5}) \times \cos (\theta)+(2r^2-\dfrac{r^4}{4})]_0^2 d\theta $ Hence, we have $I=\int_0^{2 \pi} 3(\dfrac{32}{3}-\dfrac{32}{5}) \times (\cos \theta)+(8-\dfrac{16}{4}) d\theta=8 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.