Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.9 Exercises - Page 1157: 8

Answer

$\dfrac{384 \pi}{5}$

Work Step by Step

Divergence Theorem: $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_Ediv \overrightarrow{F}dV $ $div F=\dfrac{\partial p}{\partial x}+\dfrac{\partial q}{\partial y}+\dfrac{\partial r}{\partial z}=\dfrac{\partial (x^3+y^3)}{\partial x}+\dfrac{\partial (y^3+z^3)}{\partial y}+\dfrac{\partial (z^3+x^3)}{\partial z}=3x^2+3y^2+3z^2$ Apply Spherical coordinates. Since, $dV=dxdydz=\rho^2 \sin \phi d \rho d\theta d\phi$ Now, $I=\iiint_E (3x^2+3y^2+3z^2)dV=\int_{0}^{\pi}\int_0^{2 \pi} \int_0^{2} (3 \rho^2) \times \rho^2 \times \sin \phi d\rho d\theta d\phi$ and $I=\int_{0}^{\pi}\int_0^{2 \pi} \int_0^{2} (3 \rho^4) \times \sin \phi \times d\rho d\theta d\phi=3\times [-\cos \phi]_{0}^{\pi} \times [\theta]_0^{2 \pi} \times [\dfrac{\rho^5}{5}]_0^2$ Hence, $I=3\times [-(\cos \pi-\cos 0)] \times [2 \pi-0] \times [\dfrac{(2)^5}{5}-0]=(3)\times (1+1) \times (2 \pi) \times \dfrac{32}{5}=\dfrac{384 \pi}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.