Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.4 Exercises - Page 1114: 8

Answer

$$0$$

Work Step by Step

Write the parametric representation for the boundary of the ellipse as: $x= \sqrt 2 \cos \theta; y= \sin \theta$ and {$(r, \theta) \in D| 0 \leq r \leq 1; 0 \leq \theta \leq 2 \pi$} Green's Theorem states that: $\oint_C A\,dx+B \,dy=\iint_{D}(\dfrac{\partial B}{\partial x}-\dfrac{\partial A}{\partial y}) dA $ We need to work out the integrand of the double integral as follows: $\oint_C y^4 dx+2xy^3 dy=\iint_{D}(\dfrac{\partial (2xy^3 )}{\partial x}-\dfrac{\partial (y^4 ) }{\partial y})dA=\iint_{D} -2y^3 dA$ Now, we will rewrite the double integral as an iterated integral and solving, we get: $\iint_{D} -2y^3 dA=\int_{0}^{2 \pi} \int_{0}^{1} -2 (r \sin \theta)^3 (r \sqrt 2) dr d \theta$ Consider $I=\int_{0}^{2 \pi} \int_{0}^{1} -2 (r \sin \theta)^3 (r \sqrt 2) dr d \theta =-2 \sqrt 2 \times (\int_{0}^{2 \pi} \sin^3 \theta d\theta ) ( \int_0^1 r^4 dr)$ Since, $\int_{0}^{2 \pi} \sin^3 \theta d\theta =0 $ Thus, we get: $\oint_C y^4 dx+2xy^3 dy=-(2 \sqrt 2) (0) (\int_0^1 r^4 dr)=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.