Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.4 Exercises - Page 1114: 26

Answer

$I_y=I_x= \dfrac{\pi \rho a^4}{4} $

Work Step by Step

The given curve can be parameterized as: $x= \cos \theta; y= 2 \sin \theta$ and $ 0 \leq \theta \lt 2 \pi $ Green's Theorem states that: $\oint_C A\,dx+B \,dy=\iint_{D}(\dfrac{\partial B}{\partial x}-\dfrac{\partial A}{\partial y}) dA $ We need to set up the line integral and compute the integrand of the double integral as follows: The moment of inertia about the $x$-axis is: $I_x=\dfrac{-\rho}{3} \oint_{C} y^3 dx \\= \dfrac{-\rho}{3} \int_{0}^{2 \pi} ( a\sin^3 \theta) (-a \sin \theta d \theta) \\=\dfrac{\rho^4}{12} \int_{0}^{2 \pi} (1-\cos \theta)^2 d \theta \\ =\dfrac{\rho^4}{24} [3 \theta-2 \sin 2 \theta+\dfrac{\sin 4 \theta}{4}]_0^{2 \pi} = \dfrac{\pi \rho a^4}{4} $ Now, by symmetry we can say that the moment of inertia about the $y$-axis is: $I_y=I_x= \dfrac{\pi \rho a^4}{4} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.