Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.4 Exercises - Page 1114: 25

Answer

$I_x=\iint_{D} \rho y^2 dA$ and $I_y=\iint_{D} \rho x^2 dA$

Work Step by Step

Green's Theorem states that: $\oint_C A\,dx+B \,dy=\iint_{D}(\dfrac{\partial B}{\partial x}-\dfrac{\partial A}{\partial y}) dA $ We need to set up the line integral and compute the integrand of the double integral as follows: The moment of inertia about the $x$-axis is: $$I_x=\dfrac{-\rho}{3} \oint_{C} y^3 dx \\= \dfrac{-\rho}{3} \iint_{D}(\dfrac{\partial (0)}{\partial x}-\dfrac{\partial (-y^2)}{\partial y})dA \\=\dfrac{-\rho}{3} \times \oint_{C} 3y^2 dx \\ = \iint_{D} \rho y^2 dA$$ The moment of inertia about the $y$-axis is: $I_y= \dfrac{\rho}{3} \oint_{C} x^3 dy \\=\dfrac{\rho}{3} \iint_{D} \iint_{D}(\dfrac{\partial (x^3)}{\partial x}-\dfrac{\partial (0)}{\partial y})dA \\=\dfrac{\rho}{3} \times \iint_{D} 3x^2 dA \\= \iint_{D} \rho x^2 dA$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.