Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1075: 28

Answer

$\dfrac{\pi}{14} $ or, $\approx 0.2244$

Work Step by Step

Consider $I=\int_{-1}^{ 1}\int_{-\sqrt {1-x^2}} ^{-\sqrt {1-x^2}}\int_{0} ^{\sqrt {1-x^2-y^2} } z^3(x^2+y^2+z^2)^{1/2} dz dy dx$ Use spherical coordinates: $x =\rho \sin \phi \cos \theta; y =\rho \sin \phi \sin \theta$ and $\rho^2 =x^2+y^2+z^2$ $I=\int_{0}^{\pi/2}\int_{0} ^{2 \pi} \int_0^1 \rho^6 \cos^3 \phi \sin \phi d\rho d\theta d\phi$ or, $=\int_{0}^{\pi/2} \cos^3 \phi \sin \phi d\phi \int_{0} ^{2 \pi} d\theta \int_0^1 \rho^6 d\phi$ or, $=\dfrac{1}{4}[\cos^4 \phi ]_0^{\pi/2} [\theta]_0^{2 \pi} \times (1/7) \rho^6 d\rho$ or, $=\dfrac{\pi}{14} \approx 0.2244$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.