Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.8 Exercises - Page 1055: 28

Answer

$\dfrac{\pi^2 ka^4}{4}$

Work Step by Step

Here, we have $m=\\\int_Bk\sqrt{x^2+y^2} dV=\int_0^{2\pi} \int_{0}^{a}\int_{-\sqrt{a^2-r^2}}^{\sqrt{a^2-r^2}} (kr) \times (r) dz dr d\theta$ or, $=\int_0^{2\pi} \int_{0}^{a}\int_{-\sqrt{a^2-r^2}}^{\sqrt{a^2-r^2}} kr^2 dz dr d\theta$ or, $=2\pi \int_{0}^{a} 2kr^2 \sqrt{a^2-r^2} dr$ Plug in $r=a\sin p$ and $dr=a \cos p dp$ Thus, $m=2\pi \int_{0}^{a} 2kr^2 \sqrt{a^2-r^2} dr=2\pi \int_{0}^{\pi/2} 2ka^2 \sin^2 p \sqrt{a^2-a^2 \sin^2 p} \times a \cos p dp$ or, $=\pi ka^4\int_0^{\pi/2} \sin^2 2p dp$ or, $=(1/2) \pi ka^4\int_0^{\pi/2} 1-\cos 4p dp$ or, $=(1/2) \pi ka^4[p-\dfrac{\sin 4p}{4}]_0^{\pi/2}$ or, $m=\dfrac{\pi^2 ka^4}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.