Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.8 Exercises - Page 1055: 23

Answer

$\dfrac{4\pi}{3}(\sqrt 2 -1)$

Work Step by Step

Conversion of rectangular to cylindrical coordinate system gives: $r^2=x^2+y^2 \\ \tan \theta=\dfrac{y}{x} \\z=z$ Here, $x=r \cos \theta; y=r \sin \theta, z=z$ Let $V=\int_0^{2\pi} \int_{0}^{1}\int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} r dz dr d\theta$ or, $=\int_0^{2\pi} \int_{0}^{1}[rz]_{r}^{\sqrt{2-r^2}} r dz dr d\theta=\int_0^{2\pi} \int_{0}^{1}(r\sqrt{2-r^2}-r^2) dr d\theta$ Plug $k=2-r^2$ and $dk=-2rdr$ Thus, $V=\int_0^{2\pi} [\int_{1}^{2} (1/2) k^{1/2} dk -\int_0^1 r^2 dr] d\theta=\int_0^{2\pi} [\dfrac{1}{3}(2 \sqrt 2 -1-1) d\theta$ or, $V=\int_0^{2\pi} [\dfrac{1}{3}(2 \sqrt 2 -1-1) d\theta=\int_0^{2\pi} [\dfrac{2}{3}(\sqrt 2 -1) d\theta$ Hence, $V=\dfrac{2}{3}(\sqrt 2 -1)[\theta]_0^{2\pi}=\dfrac{4\pi}{3}(\sqrt 2 -1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.