Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.8 Exercises - Page 1055: 19

Answer

$\dfrac{8\pi}{3}+\dfrac{128}{15}$

Work Step by Step

Conversion of rectangular to cylindrical coordinate system gives: $r^2=x^2+y^2 \\ \tan \theta=\dfrac{y}{x} \\z=z$ Here, $x=r \cos \theta; y=r \sin \theta, z=z$ Let $I=\iiint_E(x+y+z)dV=\int_0^{\pi/2} \int_{0}^{2}\int_{0}^{4-r^2} (x+y+z) r dr dz d\theta$ or, $I=\int_0^{\pi/2} \int_{0}^{2}\int_{0}^{4-r^2} (r \cos \theta+r \sin \theta+z) r dr dz d\theta$ or, $I=\int_0^{\pi/2} \int_{0}^{2}\int_{0}^{4-r^2}[r^2( \cos \theta+ \sin \theta+rz) dz dr d\theta=\int_0^{\pi/2} \int_{0}^{2}[r^2( \cos \theta+ \sin \theta)(z)+\dfrac{z^2 r}{2}]_{0}^{4-r^2} drd\theta$ or, $I=\int_0^{\pi/2}[\dfrac{64}{15}(\cos \theta+ \sin \theta)+\dfrac{16}{3} d\theta=\dfrac{8\pi}{3}+\dfrac{128}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.