Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.7 Exercises - Page 978: 9

Answer

Local maximum: $f(0,0)=2$, Local minimum $f(0,4)=-30$, Saddle points $(2,2),(-2,2)$

Work Step by Step

Second derivative test: Some noteworthy points to calculate the local minimum, local maximum and saddle point of $f$. 1. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. 2.If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. 3. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is not a local minimum and local maximum or, a saddle point. For $(x,y)=(2,2)$ and $(x,y)=(-2,2)$ $D(2,2)=-144 \lt 0$ $D(0,0)=144 \gt 0$ and $f_{xx}(0,0)\lt 0$ For $(x,y)=(0,4)$ $D(0,4)=144 \gt 0$ and $f_{xx}(0,0)\gt 0$ Hence, Local maximum: $f(0,0)=2$ Local minimum $f(0,4)=-30$ Saddle points $(2,2),(-2,2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.