Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.7 Exercises - Page 978: 17

Answer

Local minimums at $f(0,1)=f(\pi,-1)=f(2 \pi,1)=-1$ and saddle points are at $(\dfrac{\pi}{2},0),(\dfrac{3\pi}{2},0)$

Work Step by Step

Second derivative test: Some noteworthy points to calculate the local minimum, local maximum and saddle point of $f$. 1. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. 2.If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. 3. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is not a local minimum, local maximum, or a saddle point. For $(x,y)=(0,0)$ $D(0,0)=4 \gt 0$ and $f_{xx}(0,0)=2 \gt 0$ For $(x,y)=(0,1)$ $D(0,1)=4 \gt 0$ and $f_{xx}=2 \gt 0$ For $(x,y)=(\pi,-1)$ $D(\pi,-1)=4 \gt 0$ and $f_{xx}=2 \gt 0$ For $(x,y)=(2\pi,1)$ $D(\pi,-1)=4 \gt 0$ and $f_{xx}=2 \gt 0$ For $(x,y)=(\dfrac{\pi}{2},0)$ $D(\dfrac{\pi}{2},0)=-2 \lt 0$ For $(x,y)=(\dfrac{3\pi}{2},0)$ $D(\dfrac{\pi}{2},0)=-2 \lt 0$ Hence, Local minimums at $f(0,1)=f(\pi,-1)=f(2 \pi,1)=-1$ and saddle points are at $(\dfrac{\pi}{2},0),(\dfrac{3\pi}{2},0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.