Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.7 Exercises - Page 978: 23

Answer

Maximum value: $f(\dfrac{\pi}{3},\dfrac{\pi}{3})=\dfrac{3 \sqrt 3}{2}$ Minimum value: $f(\dfrac{5\pi}{3},\dfrac{5\pi}{3})=-\dfrac{3 \sqrt 3}{2}$ Saddle point at $(\pi, \pi)$

Work Step by Step

Second derivative test: Some noteworthy points to calculate the local minimum, local maximum and saddle point of $f$. 1. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. 2.If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. 3. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is not a local minimum and local maximum or, a saddle point. For $(x,y)=(\dfrac{\pi}{3},\dfrac{\pi}{3})$ $D=\dfrac{9}{4}\gt 0$ ; and $f_{xx} =\sqrt 3\gt 0$ Thus, when $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. For $(x,y)=(\dfrac{5\pi}{3},\dfrac{5\pi}{3})$ $D=\dfrac{9}{4}\gt 0$ ; and $f_{xx} =-\sqrt 3\lt 0$ Thus, when $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. Also, $D(\pi, \pi)=\sin x \sin y+\sin x \sin (x+y)+\sin y \sin (x+y)=0$ Therefore, we have Maximum value: $f(\dfrac{\pi}{3},\dfrac{\pi}{3})=\dfrac{3 \sqrt 3}{2}$ Minimum value: $f(\dfrac{5\pi}{3},\dfrac{5\pi}{3})=-\dfrac{3 \sqrt 3}{2}$ Saddle point at $(\pi, \pi)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.