Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - Review Exercises - Page 331: 54

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \sqrt x } \right)^{1/x}} \cr & {\text{Evaluating}} \cr & \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \sqrt x } \right)^{1/x}} = {\left( {1 + \sqrt \infty } \right)^{1/\infty }} = {\infty ^0} \cr & {\text{This limit has the form }}{\infty ^0}.{\text{ }}\left( {{\text{Using theorem 2}}{\text{.12}}} \right) \cr & {\left( {1 + \sqrt x } \right)^{1/x}} = {e^{\frac{1}{x}\ln \left( {1 + \sqrt x } \right)}},{\text{ then}} \cr & \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \sqrt x } \right)^{1/x}} = \mathop {\lim }\limits_{x \to \infty } {e^{\frac{1}{x}\ln \left( {1 + \sqrt x } \right)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\ln \left( {1 + \sqrt x } \right)}} \cr & {\text{The first step is to evaluate }} \cr & L = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\ln \left( {1 + \sqrt x } \right) = \mathop {\lim }\limits_{x \to \infty } \frac{{\ln \left( {1 + \sqrt x } \right)}}{x} = \frac{\infty }{\infty } \cr & {\text{Using the L'Hopital's rule}} \cr & L = \mathop {\lim }\limits_{x \to \infty } \frac{{\ln \left( {1 + \sqrt x } \right)}}{x} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{{\frac{1}{{2\sqrt x }}}}{{1 + \sqrt x }}}}{1} = \mathop {\lim }\limits_{x \to \infty } \frac{1}{{2\sqrt x \left( {1 + \sqrt x } \right)}} \cr & \mathop {\lim }\limits_{x \to \infty } \frac{1}{{2\sqrt x \left( {1 + \sqrt x } \right)}} = \frac{1}{{2\sqrt \infty \left( {1 + \sqrt \infty } \right)}} = \frac{1}{\infty } = 0 \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \sqrt x } \right)^{1/x}} = \mathop {\lim }\limits_{x \to \infty } {e^{\frac{1}{x}\ln \left( {1 + \sqrt x } \right)}} = {e^0} = 1 \cr & \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \sqrt x } \right)^{1/x}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.