Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - Review Exercises - Page 331: 56

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } {x^{1/x}} \cr & {\text{Evaluating}} \cr & \mathop {\lim }\limits_{x \to \infty } {x^{1/x}} = {\infty ^{1/\infty }} = {\infty ^0} \cr & {\text{This limit has the form }}{\infty ^0}.{\text{ }}\left( {{\text{Using theorem 2}}{\text{.12}}} \right) \cr & {x^{1/x}} = {e^{\frac{1}{x}\ln x}},{\text{ then}} \cr & \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \sqrt x } \right)^{1/x}} = \mathop {\lim }\limits_{x \to \infty } {e^{\frac{1}{x}\ln x}} = {e^{\mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\ln x}} \cr & {\text{The first step is to evaluate }} \cr & L = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\ln x = \mathop {\lim }\limits_{x \to \infty } \frac{{\ln x}}{x} = \frac{\infty }{\infty } \cr & {\text{Using the L'Hopital's rule}} \cr & L = \mathop {\lim }\limits_{x \to \infty } \frac{{\ln x}}{x} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{1}{x}}}{1} = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x} \cr & \mathop {\lim }\limits_{x \to \infty } \frac{1}{x} = \frac{1}{\infty } = 0 \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to \infty } {x^{1/x}} = \mathop {\lim }\limits_{x \to \infty } {e^{\frac{1}{x}\ln x}} = {e^0} = 1 \cr & \mathop {\lim }\limits_{x \to \infty } {x^{1/x}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.