Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - Review Exercises - Page 331: 44

Answer

$$2$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{{e^{ - 2x}} - 1 + 2x}}{{{x^2}}} \cr & {\text{evaluating the limit}} \cr & = \frac{{{e^0} - 1 + 2\left( 0 \right)}}{{{{\left( 0 \right)}^2}}} \cr & = \frac{0}{0} \cr & \cr & {\text{applying l'Hopital's rule twice}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{d}{{dx}}\left[ {{e^{ - 2x}} - 1 + 2x} \right]}}{{\frac{d}{{dx}}\left[ {{x^2}} \right]}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{ - 2{e^{ - 2x}} + 2}}{{2x}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{d}{{dx}}\left[ { - 2{e^{ - 2x}} + 2} \right]}}{{\frac{d}{{dx}}\left[ {2x} \right]}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{4{e^{ - 2x}}}}{2} \cr & = \mathop {\lim }\limits_{x \to 0} 2{e^{ - 2x}} \cr & {\text{evaluating the limit}} \cr & = 2{e^{ - 2\left( 0 \right)}} \cr & = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.