Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.7 Optimization Problems - 3.7 Exercises - Page 266: 45

Answer

The maximum value of the power is $$\frac{E^{2}}{4 r}$$ and this occurs when $R=r $.

Work Step by Step

Let the power (in watts) in the external resistor is $$ P(R)=\frac{E^{2} R}{(R+r)^{2}} $$ $\Rightarrow$ $$ \begin{aligned} P^{\prime}(R) &=\frac{(R+r)^{2} \cdot E^{2}-E^{2} R \cdot 2(R+r)}{\left[(R+r)^{2}\right]^{2}} \\ &=\frac{\left(R^{2}+2 R r+r^{2}\right) E^{2}-2 E^{2} R^{2}-2 E^{2} R r}{(R+r)^{4}} \\ &=\frac{E^{2} r^{2}-E^{2} R^{2}}{(R+r)^{4}} \\ &=\frac{E^{2}\left(r^{2}-R^{2}\right)}{(R+r)^{4}} \\ &=\frac{E^{2}(r+R)(r-R)}{(R+r)^{4}} \\ &=\frac{E^{2}(r-R)}{(R+r)^{3}} \end{aligned} $$ To determine the critical numbers of $P(R) $set $P^{\prime }(R) $ equal to zero $$ P^{\prime}(R)=0 \Rightarrow R=r $$ $$ \Rightarrow P(r)=\frac{E^{2} r}{(r+r)^{2}}=\frac{E^{2} r}{4 r^{2}}=\frac{E^{2}}{4 r} $$ $$ \begin{array}{|c|c|c|}\hline \text { Interval } & {R \lt r} & {R=r} & {R\gt r} \\ \hline \text { Sign of } P^{\prime}(R) & {P^{\prime}(R) >0} & {P^{\prime}(R) =0} & {P^{\prime}(R) \lt 0} \\ \hline \text { Conclusion } & {\text { Increasing }} & {\text { critical }} & {\text { Decreasing }} \\ \hline\end{array} $$ Thus, the maximum value of the power is $\frac{E^{2}}{4 r}$ and this occurs when $R=r $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.