Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.7 Optimization Problems - 3.7 Exercises - Page 266: 41

Answer

$\frac{2\pi{R^{3}}}{9\sqrt 3}$

Work Step by Step

$h^{2}+r^{2}$ = $R^{2}$ $V$ = $\frac{\pi}{3}{r^{2}}{h}$ = $\frac{\pi}{3}(R^{2}h-h^{3})$ $V'(h)$ = $\frac{\pi}{3}(R^{2}-3h^{2})$ $V'(h)$ = $0$ $\frac{\pi}{3}(R^{2}-3h^{2})$ = $0$ $h$ = $\frac{R}{\sqrt 3}$ This gives an absolute maximum since $V'(h)$ $\gt$ $0$ for $0$ $\lt$ $h$ $\lt$ $\frac{R}{\sqrt 3}$ $V'(h)$ $\lt$ $0$ for $h$ $\gt$ $\frac{R}{\sqrt 3}$ The maximum volume is $V\left(\frac{R}{\sqrt 3}\right)$ = $\frac{\pi}{3}\left(\frac{R^{3}}{\sqrt 3}-\frac{R^{3}}{3\sqrt 3}\right)$ = $\frac{2\pi{R^{3}}}{9\sqrt 3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.