Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.9 Linear Approximations and Differentials - 2.9 Exercises - Page 193: 39

Answer

See proofs

Work Step by Step

a) $dc$ = $\frac{dc}{dx}dx$ = $0dx$ = $0$ b) $d(cu)$ = $\frac{d}{dx}(cu)dx$ = $c\frac{du}{dx}dx$ = $cdu$ c) $d(u+v)$ = $\frac{d}{dx}(u+v)$ = $\left(\frac{du}{dx}+\frac{dv}{dx}\right)dx$ = $\frac{du}{dx}dx+\frac{dv}{dx}dx$ = $du+dv$ d) $d(uv)$ = $\frac{d}{dx}(uv)dx$ = $\left(u\frac{dv}{dx}+v\frac{du}{dx}\right)dx$ = $u\frac{dv}{dx}dx+v\frac{du}{dx}dx$ = $udv+vdu$ e) $d\left(\frac{u}{v}\right)$ = $\frac{d}{dx}\left(\frac{u}{v}\right)dx$ = $\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^{2}}dx$ = $\frac{v\frac{du}{dx}dx-u\frac{dv}{dx}dx}{v^{2}}$ = $\frac{vdu-udv}{v^{2}}$ f) $d(x^{n})$ = $\frac{d}{dx}(x^{n})dx$ = $nx^{n-1}dx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.