Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.6 Calculating Limits Using the Limit Laws - 1.6 Exercises: 17

Answer

$\lim\limits_{h \to 0}\frac{(h-5)^2-25}{h}=-10$

Work Step by Step

$\lim\limits_{h \to 0}\frac{(h-5)^2-25}{h}=\lim\limits_{h \to 0}\frac{h^2-10h+25-25}{h}=\lim\limits_{h \to 0}\frac{h^2-10h}{h}=\lim\limits_{h \to 0}\frac{h(h-10)}{h}=\lim\limits_{h \to 0}\frac{(h-10)}{1}=\lim\limits_{h \to 0}{(h-10)}=-10$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.