Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 3 - Determinants - 3.3 Exercises - Page 186: 9

Answer

under $s\ne0, and\,s\ne1$ condition; $ x_{1}=\frac{-7s}{3s(s-1)}$ $ x_{2}=\frac{4s+3}{6s(s-1)}$

Work Step by Step

Viewing equation in matrix form $A\textbf{x}=\textbf{b} $ $\begin{bmatrix}1&2s\\3&6s\end{bmatrix} \,\,\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix} =\begin{bmatrix}-1\\4\end{bmatrix}$ To have a unique solution, $\textbf{A}$ must be invertible. This happens if and only if $\textbf{det A} \ne0$ $\textbf{det }\begin{bmatrix}1&2s\\3&6s\end{bmatrix}=6s^{2}-6s$ To find the limits on s: $6s^{2}-6s\ne0$ $6s(s-1)\ne0$ $s\ne0\,and\,s\ne1$ Therefore for a unique solution, $s\ne0, or\,s\ne1$ Compute $A_{i}(\textbf{b})$ by replacing the ith column by vector $\begin{bmatrix}-1\\4\end{bmatrix}$ $A_{1}\textbf{(b)}=\begin{bmatrix}-1&2s\\4&6s\end{bmatrix} ,\, and\,, det(A_{1}\textbf{(b)})=-6s-8s$ $A_{2}\textbf{(b)}=\begin{bmatrix}s&-1\\3&4\end{bmatrix} ,\, and\,, det(A_{2}\textbf{(b)})=4s+3$ By using Cramer's rule, if $s\ne0, and\,s\ne1$, that is, A is Invertible then; $ x_{1}=\frac{det(A_{1}(\textbf{b}))}{det(A_{})}=\frac{-6s-8s}{6s(s-1)}=\frac{-7s}{3s(s-1)}$ $ x_{2}=\frac{det(A_{2}(\textbf{b}))}{det(A_{})}=\frac{4s+3}{6s(s-1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.