Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 3 - Determinants - 3.3 Exercises - Page 186: 8

Answer

$ x_{1}=\frac{3s-2}{3(s^{2}-4)}$ $ x_{2}=\frac{2s-12}{5(s^{2}-4)}$

Work Step by Step

Writing the equation in matrix form $A\textbf{x}=\textbf{b} $ $\begin{bmatrix}3s&5\\12&5s\end{bmatrix} \,\,\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix} =\begin{bmatrix}3\\2\end{bmatrix}$ To have a unique solution, $\textbf{A}$ must be irreversible. This happens if and only if $\textbf{det A} \ne0$ $\textbf{det }\begin{bmatrix}3s&5\\12&5s\end{bmatrix}=15s^{2}-60$ To find the limits on s: $15s^{2}-60=0$ $15s^{2}=60$ $s^{2}=4$ $s=+2, or\, s=-2$ Therefore for a unique solution, $s\ne+2, or\,s\ne-2$ Compute $A_{1}\textbf{(b)}=\begin{bmatrix}3&5\\2&5s\end{bmatrix} ,\, and\,, det(A_{1}\textbf{(b)})=15s-10$ $A_{2}\textbf{(b)}=\begin{bmatrix}3s&3\\12&2\end{bmatrix} ,\, and\,, det(A_{2}\textbf{(b)})=6s-36$ By using Cramer's rule, if $s\ne+2, or\,s\ne-2$, that is, A is Invertible then; $ x_{1}=\frac{det(A_{1}(\textbf{b}))}{det(A_{})}=\frac{15s-10}{15(s^{2}-4)}=\frac{3s-2}{3(s^{2}-4)}$ $ x_{2}=\frac{det(A_{2}(\textbf{b}))}{det(A_{})}=\frac{6s-36}{15(s^{2}-4)}=\frac{2s-12}{5(s^{2}-4)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.