College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 4, Exponential and Logarithmic Functions - Section 4.6 - Modeling with Exponential Functions - 4.6 Exercises - Page 416: 18

Answer

(a).$m(t)=10\times2^{-t/30}$ (b).$m(t)=10e^{-0.02311t}$ (c).. $m(80)=10\times2^{-2.66}=1.5749$ (d).$t=69.64$

Work Step by Step

$m(t)=m_0e^{-rt}$. Whereas,$m(t)$ is the mass of radioactive substance after time $t$, $m_0$ is the Initial mass of radioactive substance, $r=\frac{\ln 2}{h}$ is the rate of decay while $h$ is the half-life and $t$ is time. (a).$m_0=10$ $m(t)=m_02^{-t/h}=10\times2^{-t/30}$ (b). $r=\frac{\ln2}{h}=0.02311$ $m(t)=m_0e^{-rt}=10e^{-0.02311t}$ (c). $m(80)=10\times2^{-80/30}=10\times2^{-2.66}=1.5749$ (d). $2=10\times e^{-0.02311t}$, $0.2=e^{-0.02311t}$, $\ln(0.2)=-0.02311t$, $t=69.64$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.