College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 4, Exponential and Logarithmic Functions - Section 4.6 - Modeling with Exponential Functions - 4.6 Exercises - Page 416: 17

Answer

(a).$m(t)=22\times2^{-t/1600}$ (b).$m(t)=22e^{-0.000433t}$ (c).$m(4000)=3.8891$ (d).$t=463.44$

Work Step by Step

$m(t)=m_0e^{-rt}$. Whereas,$m(t)$ is the mass of radioactive substance after time $t$, $m_0$ is the Initial mass of radioactive substance, $r=\frac{\ln 2}{h}$ is the rate of decay while $h$ is the half-life and $t$ is time. (a).$m_0=22$ $m(t)=m_02^{-t/h}=22\times2^{-t/1600}$ (b). $r=\frac{\ln2}{h}=0.000433$ $m(t)=m_0e^{-rt}=22e^{-0.000433t}$ (c). $m(4000)=22\times2^{-4000/1600}=22\times2^{-2.5}=3.8891$ (d). $18=22\times e^{-0.000433t}$, $0.8181=e^{-0.000433t}$, $\ln(0.8181)=-0.000433t$, $t=463.44$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.