Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 32 - The Magnetic Field - Exercises and Problems - Page 956: 9

Answer

See the detailed answer below.

Work Step by Step

We know that the magnetic field of a long straight current wire is given by $$B=\dfrac{\mu_0I}{2\pi d}$$ Hence, the distance needed from the long thin wire is given by $$d=\dfrac{\mu_0I}{2\pi B}$$ For current of $I=10\;\rm A$; $$d=\dfrac{(4\pi \times 10^{-7})(10)}{2\pi B}$$ $$d=\dfrac{(20 \times 10^{-7}) }{ B}$$ Using the data in Table 32.1, to find the distances needed, $$d_1=\dfrac{(20 \times 10^{-7}) }{ B_{\rm Earth's \;surface}}=\dfrac{(20 \times 10^{-7}) }{ (5\times 10^{-5})}=\color{red}{\bf 4}\;\rm cm$$ $$d_2=\dfrac{(20 \times 10^{-7}) }{ B_{\rm Refrigerator\;magnet}}=\dfrac{(20 \times 10^{-7}) }{ (5\times 10^{-3})}=\color{red}{\bf 0.04}\;\rm cm$$ $$(d_3)_{\rm minimun}=\dfrac{(20 \times 10^{-7}) }{ B_{\rm Lab\;magnet}}=\dfrac{(20 \times 10^{-7}) }{ (0.1)}=\color{red}{\bf 20}\;\rm \mu m$$ $$(d_3)_{\rm maximum}=\dfrac{(20 \times 10^{-7}) }{ B_{\rm Lab\;magnet}}=\dfrac{(20 \times 10^{-7}) }{ (1)}=\color{red}{\bf 2.0}\;\rm \mu m$$ $$d_4 =\dfrac{(20 \times 10^{-7}) }{ B_{\rm Lab\;magnet}}=\dfrac{(20 \times 10^{-7}) }{ (10)}=\color{red}{\bf 0.2}\;\rm \mu m$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.