Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 29 - Potential and Field - Exercises and Problems - Page 866: 78

Answer

$-{ \rho R^2}/{4\epsilon_0}$

Work Step by Step

The easiest way to solve this problem is to use the Gaussian surfaces. Assume that there is a Gaussian cylinder inside the cylinder of radius $r$ where $r\lt R$. And the length of this Gaussian cylinder is $L$. We are given that $\rho $ is the volume charge density, so $$\rho=\dfrac{Q_{\rm enclosed}}{V_{\rm Gaussian \;cylinder }}$$ Hence, $$Q_{\rm enclosed}=\rho V_{\rm Gaussian \;cylinder }$$ $$Q_{\rm enclosed}=\rho \pi r^2 L\tag 1$$ According to Gauss's law, $$\oint EdA=E(2\pi r L)$$ Hence, $$ 2\pi r LE=\dfrac{Q_{\rm enclosed}}{\epsilon_0}$$ Plug from (1), $$ 2 \color{red}{\bf\not}\pi \color{red}{\bf\not}r \color{red}{\bf\not}LE=\dfrac{\rho \color{red}{\bf\not} \pi r^{ \color{red}{\bf\not}2} \color{red}{\bf\not} L}{\epsilon_0}$$ $$E=\dfrac{ r \rho}{2\epsilon_0}\tag 2$$ Recalling that $\Delta V=-\int Eds$, So, $$\Delta V=-\int_0^REdr$$ Plug from (2), $$\Delta V=-\dfrac{ \rho}{2\epsilon_0}\int_0^Rrdr$$ $$\Delta V=-\dfrac{ \rho}{4\epsilon_0} r^2\bigg|_0^R$$ $$\boxed{\Delta V=-\dfrac{ \rho R^2}{4\epsilon_0} }$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.