Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 29 - Potential and Field - Exercises and Problems - Page 866: 77

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ As we see in the figure below, the potential at point $\rm P$ is given by $$V=V_1+V_2=\dfrac{k_eq_1}{r_1}+\dfrac{k_eq_2}{r_2}$$ $$V= \dfrac{k_e q}{r_1}+\dfrac{-k_eq}{r_2}$$ where, from the geometry of the figure below, $r_1=\sqrt{x^2+\left(y-\dfrac{s}{2}\right)^2}$ and $r_2=\sqrt{x^2+\left(y+\dfrac{s}{2}\right)^2}$ $$V= k_e q\left[\dfrac{1}{\sqrt{x^2+\left(y-\dfrac{s}{2}\right)^2} }-\dfrac{1}{ \sqrt{x^2+\left(y+\dfrac{s}{2}\right)^2}}\right]$$ Recalling that $k_e=1/4\pi \epsilon_0$ $$\boxed{V=\dfrac{q}{4\pi \epsilon_0}\left[\dfrac{1}{\sqrt{x^2+\left(y-\dfrac{s}{2}\right)^2} }-\dfrac{1}{ \sqrt{x^2+\left(y+\dfrac{s}{2}\right)^2}}\right]}$$ $$\color{blue}{\bf [b]}$$ when $y\gt \gt s$ and $x\gt \gt s$, so we cna rewrite the boxed formula as follows to use the binomial approximiation as the author told us. $$ V=\dfrac{q}{4\pi \epsilon_0}\left[\dfrac{1}{\sqrt{x^2+y^2\left(1-\dfrac{s}{2y}\right)^2} }-\dfrac{1}{ \sqrt{x^2+y^2\left( 1+\dfrac{s}{2y}\right)^2}}\right] $$ $$ V=\dfrac{q}{4\pi \epsilon_0}\left[\dfrac{1}{\sqrt{x^2+y^2\left(1-\dfrac{s}{y}+\dfrac{s^2}{4y^2}\right)} }-\dfrac{1}{ \sqrt{x^2+y^2\left( 1+\dfrac{s}{y}+\dfrac{s^2}{4y^2}\right)}}\right] $$ $$ V=\dfrac{q}{4\pi \epsilon_0}\left[\dfrac{1}{\sqrt{x^2+y^2 -ys+\dfrac{s^2}{4 } } }-\dfrac{1}{ \sqrt{x^2+y^2 +ys+\dfrac{s^2}{4 } }}\right] $$ $$ V=\dfrac{q}{4\pi \epsilon_0\sqrt{x^2+y^2}}\left[\dfrac{1}{\sqrt{ 1+\dfrac{-ys+\dfrac{s^2}{4 }}{x^2+y^2} } }-\dfrac{1}{ \sqrt{1+\dfrac{ +ys+\dfrac{s^2}{4 }}{x^2+y^2} }}\right] $$ $$ V=\dfrac{q}{4\pi \epsilon_0\sqrt{x^2+y^2}}\left[\left( 1+\dfrac{-ys+\dfrac{s^2}{4 }}{x^2+y^2} \right)^{-1/2}-\left(1+\dfrac{ +ys+\dfrac{s^2}{4 }}{x^2+y^2} \right)^{-1/2}\right] $$ Recaling that the binomial approximiation states that $(1+x)^n\approx 1+nx$ when $x\lt \lt 1$. So $\left( 1+\dfrac{-ys+\dfrac{s^2}{4 }}{x^2+y^2} \right)^{-1/2}\approx 1-\dfrac{-ys+\dfrac{s^2}{4 }}{2(x^2+y^2)} $ and hence, $\left(1+\dfrac{ +ys+\dfrac{s^2}{4 }}{x^2+y^2} \right)^{-1/2}\approx 1-\dfrac{ +ys+\dfrac{s^2}{4 }}{2(x^2+y^2)}$ Therefore, $$ V=\dfrac{q}{4\pi \epsilon_0\sqrt{x^2+y^2}}\left[\left( 1-\dfrac{-ys+\dfrac{s^2}{4 }}{2(x^2+y^2)} \right) -\left(1-\dfrac{ +ys+\dfrac{s^2}{4 }}{2(x^2+y^2)} \right) \right] $$ $$ V=\dfrac{q}{4\pi \epsilon_0\sqrt{x^2+y^2}}\left[ -\dfrac{-ys+\dfrac{s^2}{4 }}{2(x^2+y^2)} +\dfrac{ ys+\dfrac{s^2}{4 }}{2(x^2+y^2)} \right] $$ $$ V=\dfrac{q}{4\pi \epsilon_0\sqrt{x^2+y^2}}\left[ \dfrac{ ys-\dfrac{s^2}{4 }}{2(x^2+y^2)} +\dfrac{ ys+\dfrac{s^2}{4 }}{2(x^2+y^2)} \right] $$ $$ V=\dfrac{q}{4\pi \epsilon_0\sqrt{x^2+y^2}}\left[ \dfrac{ ys}{ (x^2+y^2)} \right] $$ $$\boxed{ V=\dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ qys}{ (x^2+y^2)^{3/2}} \right] }\tag 1$$ $$\color{blue}{\bf [c]}$$ We know that $E_s=-dV/ds$, so that $$E_x=-\dfrac{d}{dx}V$$ Plug from (1), $$E_x=-\dfrac{d}{dx}\dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ qys}{ (x^2+y^2)^{3/2}} \right] $$ $$E_x=- \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ -3xqys(x^2+y^2)^{1/2}}{ (x^2+y^2)^3} \right] $$ $$\boxed{E_x= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ 3xyqs}{ (x^2+y^2)^{5/2}} \right] }$$ And hence, $$E_y=-\dfrac{d}{dy}V$$ $$E_y=-\dfrac{d}{dy}\dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ qys}{ (x^2+y^2)^{3/2}} \right] $$ $$E_y=- \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ q s(x^2+y^2)^{3/2}-3qsy^2(x^2+y^2)^{1/2}}{ (x^2+y^2)^{3}} \right] $$ $$E_y= \dfrac{ qs}{4\pi \epsilon_0 }\left[ \dfrac{3 y^2 - (x^2+y^2) }{ (x^2+y^2)^{5/2}} \right] $$ $$\boxed{E_y= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ qs(2 y^2 - x^2) }{ (x^2+y^2)^{5/2}} \right] }$$ $$\color{blue}{\bf [d]}$$ The on-axis means that $x=0$, so from the boxed formula of the electric field in $y$-axis in the $y$-axis, $$E_y= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ qs(2 y^2 - 0^2) }{ (0^2+y^2)^{5/2}} \right]$$ $$E_y= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{2qs y^2 }{ y^5} \right]$$ $$E_y= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{2qs }{ y^3} \right]$$ where $qs=p$ $$E_y= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{2p }{ y^3} \right]=E_{\rm dipole}\tag{on axis}$$ $$\color{blue}{\bf [e]}$$ The on the bisecting axis means that $y=0$, and hence $E_x=0$. So from the boxed formula of the electric field in $y$-axis in the $y$-axis, $$ E_y= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ qs(0^2 - x^2) }{ (x^2+0^2)^{5/2}} \right] $$ $$ E_y= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ -qs x^2 }{ x^5} \right] $$ $$ E_y= \dfrac{1}{4\pi \epsilon_0 }\left[ \dfrac{ -p}{ x^3} \right] =E_{\rm dipole}\tag{bisecting axis}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.