Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 23 - Ray Optics - Exercises and Problems - Page 693: 78

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know for thin lenses that $$\dfrac{n_1}{s_1}+\dfrac{n_2}{s_1'}=\dfrac{n_2-n_1}{R_1}\tag 1$$ where $R_1$ here is for the first surface of the lens, $n_1$ is for the fluid, and $n_2$ is for the lens. By the same approach, for the second surface of the lens, where the rays come out from the lens $n_2$ to the fluid $n_1$, $$\dfrac{n_2}{s_2}+\dfrac{n_1}{s_2'}=\dfrac{n_1-n_2}{R_2}$$ where $s_2$ is the object for the second surface which is the virtual image of the first surface, so that $s_2=-s_1'$, $$\dfrac{n_2}{-s_1'}+\dfrac{n_1}{s_2'}=\dfrac{n_1-n_2}{R_2}\tag 2$$ (1) Plus (2), $$\dfrac{n_1}{s_1}+\overbrace{\dfrac{n_2}{s_1'}+\dfrac{n_2}{-s_1'}}^{=0}+\dfrac{n_1}{s_2'}=\dfrac{n_2-n_1}{R_1}+\dfrac{n_1-n_2}{R_2} ​$$ $$\dfrac{n_1}{s_1}+\dfrac{n_1}{s_2'} =\dfrac{n_2-n_1}{R_1}-\dfrac{n_2-n_1}{R_2}$$ $$\dfrac{n_1}{s_1}+\dfrac{n_1}{s_2'} ​=(n_2-n_1)\left[ \dfrac{1}{R_1}-\dfrac{1}{R_2}\right] ​$$ Divide both side by $n_1$ $$\overbrace{\dfrac{1}{s_1}+\dfrac{1}{s_2'}}^{\dfrac{1}{f}} ​=\dfrac{n_2-n_1}{n_1}\left[ \dfrac{1}{R_1}-\dfrac{1}{R_2}\right] ​$$ Therefore, $$\boxed{{\dfrac{1}{s_1}+\dfrac{1}{s_2'}}={\dfrac{1}{f}} ​=\dfrac{n_2-n_1}{n_1}\left[ \dfrac{1}{R_1}-\dfrac{1}{R_2}\right] ​}$$ $$\color{blue}{\bf [b]}$$ Now the two radii are equal in magnitude but $R_1=40$ cm since it is convex toward the object and $R_2=-40$ cm since it is concave toward the object. $\Rightarrow$ when the glass lens is in air, $n_1=1$, $n_2=1.5$: Using the boxed formula above, $$ {\dfrac{1}{f}} ​=\dfrac{n_2-n_1}{n_1}\left[ \dfrac{1}{R_1}-\dfrac{1}{R_2}\right] $$ $$f=\dfrac{n_1}{n_2-n_1}\left[ \dfrac{1}{R_1}-\dfrac{1}{R_2}\right]^{-1}$$ Plugging the known; $$f=\dfrac{1}{1.5-1}\left[ \dfrac{1}{40}-\dfrac{1}{-40}\right]^{-1}$$ $$f=\color{red}{\bf 40}\;\rm cm$$ $\Rightarrow$ when the glass lens is in water, $n_1=1.33$, $n_2=1.5$: $$f=\dfrac{n_1}{n_2-n_1}\left[ \dfrac{1}{R_1}-\dfrac{1}{R_2}\right]^{-1}$$ Plugging the known; $$f=\dfrac{1.33}{1.5-1.33}\left[ \dfrac{1}{40}-\dfrac{1}{-40}\right]^{-1}$$ $$f=\color{red}{\bf 156}\;\rm cm$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.