Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 23 - Ray Optics - Exercises and Problems - Page 693: 81

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We have here two cases, $\bullet$ when the index of refraction is $n$, applying Snell's law $$n_1\sin\theta_1=n_2\sin \theta_2 $$ where $n_1=1$ for air, and $n_2=n$, $$ \sin\theta_1=n \sin \theta_2 \tag 1$$ $\bullet$ when the index of refraction is $n+\delta n$, applying Snell's law $$n_1\sin\theta_1=n_2\sin(\theta_2 +\delta\theta)$$ where $n_1=1$ for air, and $n_2=n+\delta n$, $$ \sin\theta_1=(n +\delta n)\sin(\theta_2+\delta\theta )\tag 2$$ It is obvious that the left sides of (1) and (2) are identical, and so do the right sides. $$ n \sin \theta_2 =(n +\delta n)\sin(\theta_2+\delta\theta )$$ $$ n \sin \theta_2 =(n +\delta n)(\sin\theta_2 \cos\delta\theta+\cos\theta_2 \sin\delta \theta)$$ and since $\delta \theta\lt \lt \theta$, then $\cos\delta\theta\approx 1$, and $\sin\delta \theta\approx \delta \theta$ [Recall small angle approximation] $$ n \sin \theta_2 =(n +\delta n)(\sin\theta_2 +\delta \theta\cos\theta_2 )$$ $$ n \sin \theta_2 = n\sin\theta_2 +n\delta \theta\cos\theta_2 +\delta n\sin\theta_2 +\delta n\delta \theta\cos\theta_2$$ $$\overbrace{ n \sin \theta_2 - n\sin\theta_2}^{=0} =n\delta \theta\cos\theta_2 +\delta n\sin\theta_2 +\delta n\delta \theta\cos\theta_2$$ $$0=n\delta \theta\cos\theta_2 +\delta n\sin\theta_2 +\overbrace{\delta n\delta \theta\cos\theta_2}^{\approx 0}$$ the last term approaches zero since it is a product of two small values. Solving for $\delta \theta$, $$ \delta \theta =-\dfrac{\delta n\sin\theta_2}{n\cos\theta_2}=-\dfrac{\delta n }{n}\tan\theta_2$$ $$ \boxed{\delta \theta =-\left[\dfrac{\delta n }{n}\right]\tan\theta_2}$$ $$\color{blue}{\bf [b]}$$ We need to use Snell's law in both cases, For red, $$n_{air}\sin30^\circ=n_{red}\sin\theta_{red}$$ $$ \sin30^\circ=1.552\sin\theta_{red}=\bf 18.794^\circ$$ Now we can use the boxed formula above, where $\delta\theta=-0.28^\circ\cdot\dfrac{\pi}{180}\;\rm rad$, $n=n_{red}=1.552$ $$\delta \theta =-\left[\dfrac{\delta n }{n}\right]\tan\theta_2$$ Solving for $\delta n$, $$ \delta n=\dfrac{-n_{red}\delta \theta}{\tan\theta_{2,red}} $$ Plugging the known; $$ \delta n=\dfrac{-(1.552)\dfrac{-0.28^\circ\pi}{180} }{\tan 18.794^\circ} =\bf 0.0223$$ Therefore, $$n_{violet}=n_{red}+\delta n=1.552+0.0223$$ $$n_{violet}=\color{violet}{\bf 1.5743}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.