Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.1 - Page 396: 52

Answer

$\phi \,\,which\,\,is\,defined\,as\,follows:\\ For\,each\,integer\,\,\,\, n \geq 1, \\\phi(n)\,is\,the\,number\,of\,positive\,integers\,less\,than\,or\,equal\,\, to\,n\,\,\\that\,have\,no\,common\,factors\,with\,\,n\,\,except\,\,\pm 1. \\ notice\,that\,p^n\,factors\,are\,\\p,2p,3p,4p,....,p^{n-1}(p)(they\,are\,p^{n-1}integers)\\ because\,\,there\,are\,p^n\,positive\,integers\,less\,than\,\,\\ or\,\,equal\,to\,p^n\,\,and\,there\,are\,p^{n-1}integers \,\\that\,have\,common\,factors \,with\,p^n\,\\ therefore\\ there\,are\,p^n-p^{n-1}\,positive\,integers\,less\,than\\ or\,equal\,to\,p^n\,that\,have\,no\,common\,factors\,with\,p^n\,except\,\pm 1 so\,\,\,\\ \phi(p^n)=p^n-p^{n-1}. $

Work Step by Step

$\phi \,\,which\,\,is\,defined\,as\,follows:\\ For\,each\,integer\,\,\,\, n \geq 1, \\\phi(n)\,is\,the\,number\,of\,positive\,integers\,less\,than\,or\,equal\,\, to\,n\,\,\\that\,have\,no\,common\,factors\,with\,\,n\,\,except\,\,\pm 1. \\ notice\,that\,p^n\,factors\,are\\\,p,2p,3p,4p,....,p^{n-1}(p)(they\,are\,p^{n-1}integers)\\ because\,\,there\,are\,p^n\,positive\,integers\,less\,than\,\,\\ or\,\,equal\,to\,p^n\,\,and\,there\,are\,p^{n-1}integers \,\\that\,have\,common\,factors \,with\,p^n\,\\ therefore\\ there\,are\,p^n-p^{n-1}\,positive\,integers\,less\,than\\ or\,equal\,to\,p^n\,that\,have\,no\,common\,factors\,with\,p^n\,except\,\pm 1 so\,\,\,\\ \phi(p^n)=p^n-p^{n-1}. $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.