Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.6 Exercises - Page 1133: 53

Answer

$A(S) = 2\pi \int_0^2 r \sqrt {4r^2 e^{-2r^2}+1} dr \approx 13.9783$

Work Step by Step

The parameterization for the given surface is: $r=\lt r \cos \theta, r \sin \theta, e^{-r^2} \gt$ We have $A(S)=\iint_{D} |r_r \times r_{\theta}| dA$ and $\iint_{D} dA$ is the area of the region $D$ and $|r_r \times r_{\theta} dA=r \sqrt {4r^4e^{-2r^2}+r^2}=r \sqrt {4r^2 e^{-2r^2}+1}$ Now, $A(S) \iint_{D} |r_r \times r_{\theta}| dA=\iint_{D} r \sqrt {4r^2 e^{-2r^2}+1} d \theta dr$ or, $=\int_0^2 \int_0^{2 \pi} r \sqrt {4r^2 e^{-2r^2}+1}d \theta dr$ or, $=2\pi \int_0^2 r \sqrt {4r^2 e^{-2r^2}+1} dr$ Therefore, by using a calculator, we get $A(S) = 2\pi \int_0^2 r \sqrt {4r^2 e^{-2r^2}+1} dr \approx 13.9783$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.