Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.6 Exercises - Page 1133: 45

Answer

$\dfrac{2 \pi}{3}(2 \sqrt 2-1)$

Work Step by Step

We have $A(S)=\iint_{D} \sqrt {1+(\dfrac{\partial z}{\partial x} )^2+(\dfrac{\partial z}{\partial y} )^2 } dA= \iint_{D} \sqrt {1+(y)^2+(x)^2 } dA= \iint_{D} \sqrt {1+y^2+x^2} dA $ and $\iint_{D} dA$ is the area of the region $D$ Therefore, $A(S)=\iint_{D} \sqrt {1+(\dfrac{\partial z}{\partial x} )^2+(\dfrac{\partial z}{\partial y} )^2 } dA=\iint_{D} \sqrt {1+y^2+x^2} dA =\int_0^{2 \pi} \int_{0}^{1} \sqrt {1+r^2} r dr d \theta $ Substitute $a=1+r^2 $ and $da= 2 r dr$ Now, $A(S)= \dfrac{1}{2} \int_0^{2 \pi} \int_{1}^{2} \sqrt {a} da d \theta=\dfrac{1}{2} \int_0^{2 \pi} [\dfrac{2a^{3/2}}{3}]_{1}^{2} d \theta$ This implies that, $A(S)=\dfrac{2 \pi}{3}(2 \sqrt 2-1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.