Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.9 Exercises - Page 1061: 8

Answer

Circular cylinder centered at the x-axis with radius $3$.

Work Step by Step

Conversion of rectangular to spherical coordinates is as follows: $x=\rho \sin \phi \cos \theta; y=\rho \sin \phi \sin \theta;z=\rho \cos \phi$ and $\rho=\sqrt {x^2+y^2+z^2}$; $\cos \phi =\dfrac{z}{\rho}$; $\cos \theta=\dfrac{x}{\rho \sin \phi}$ Here, $\rho^2( \sin^2 \theta \sin^2 \phi+\cos^2 \phi) =9$ This implies that $\rho^2 \sin^2 \theta \sin^2 \phi+\rho^2 \cos^2 \phi) =9$ or, $y^2+z^2=9$ or, $y^2+z^2=3^2$ Hence, the given equation shows a circular cylinder centered at the x-axis with radius $3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.