Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.10 Exercises - Page 1072: 24

Answer

$ \dfrac{e^6}{4}-\dfrac{7}{4}$

Work Step by Step

Plug $u=x-y$ and $v=x+y$ Here, we have: $Jacobian (x,y)=\begin{vmatrix} \dfrac{\partial x}{\partial u}&\dfrac{\partial x}{\partial v}\\\dfrac{\partial y}{\partial u}&\dfrac{\partial y}{\partial v}\end{vmatrix}=1 \cdot (1) -(-1)(1)=2$ Then, we have $Jacobian(u,v)=\dfrac{1}{2}$ Now, $\iint_R (x+y) e^{x^2-y^2} dA=\iint_{R} (x+y) e^{(x+y)(x-y)} dA$ This implies that $=(\dfrac{1}{2}) \int_0^{3} \int_0^2 v e^{uv} du dv$ $=(\dfrac{1}{2}) \int_0^3 (e^{2v}-1) dv$ and $\iint_R (x+y) e^{x^2-y^2} dA=(\dfrac{1}{2}) [(\dfrac{1}{2}) (e^{2v}-v)]_0^3 =(\dfrac{1}{2}) [\dfrac{e^6}{2}-3-\dfrac{1}{2}]$ Hence, $\iint_R (x+y) e^{x^2-y^2} dA= \dfrac{e^6}{4}-\dfrac{7}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.