Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.5 Exercises - Page 955: 23

Answer

$$\frac{\partial w}{\partial r} = 2\pi$$ $$\frac{\partial w}{\partial \theta} =-2\pi$$

Work Step by Step

1. According to the chain rule: $$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r}$$ $$\frac{\partial w}{\partial \theta} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial \theta} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial \theta}$$ $$\frac{\partial w}{\partial x} = \frac{\partial (xy + yz + zx)}{\partial x}= y + z$$ $$\frac{\partial w}{\partial y} = \frac{\partial (xy + yz + zx)}{\partial y}= x + z$$ $$\frac{\partial w}{\partial z} = \frac{\partial (xy + yz + zx)}{\partial z}= y + x$$ $$\frac{\partial x}{\partial r} = \frac{\partial (rcos \space \theta)}{\partial r} = cos \space \theta$$ $$\frac{\partial x}{\partial \theta} = \frac{\partial (rcos \space \theta)}{\partial \theta} = -rsin \space \theta$$ $$\frac{\partial y}{\partial r} = \frac{\partial (rsin \space \theta)}{\partial r} = sin \space \theta$$ $$\frac{\partial y}{\partial \theta} = \frac{\partial (rsin \space \theta)}{\partial \theta} = rcos \space \theta$$ $$\frac{\partial z}{\partial r} = \frac{\partial (r \theta)}{\partial r} = \theta$$ $$\frac{\partial z}{\partial \theta} = \frac{\partial (r \theta)}{\partial \theta} = r$$ Therefore: $$\frac{\partial w}{\partial r} =(y + z)(cos \space \theta) + (x + z)(sin \space \theta) + (y + x)(\theta)$$ $$\frac{\partial w}{\partial \theta} = (y+z)(-rsin \space \theta) + (x+z)(rcos \space \theta) + (y + x)(r)$$ 2. Calculate the value for each partial derivate. $r = 2$ $\theta = \pi/2$ $x = rcos(\theta) = (2)(cos \space (\pi/2)) = 0$ $y =rsin(\theta) = (2)(sin(\pi/2)) = 2$ $z = r \theta = (2)(\pi/2) = \pi$ $$\frac{\partial w}{\partial r} =(2 + \pi)(cos \space (\pi/2)) + (0 + \pi)(sin \space (\pi /2)) + (2 + 0)(\pi/2)$$ $$\frac{\partial w}{\partial r} = \pi + \pi = 2\pi$$ $$\frac{\partial w}{\partial \theta} =(2 + \pi)(-2 sin \space (\pi/2)) + (0 + \pi)(2cos \space (\pi /2)) + (2 + 0)(2)$$ $$\frac{\partial w}{\partial \theta} = -4 - 2\pi +4 = -2\pi$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.