Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.5 Exercises - Page 955: 29

Answer

$\dfrac{1+x^4y^2+y^2+x^4y^4-2xy}{x^2-2xy-2x^5y^3}$

Work Step by Step

We are given that $ \tan^{-1} (x^2y)=x+xy^2$ Re-arrange as: $\tan^{-1} (x^2y)-x-xy^2=0$ Consider $F(x,y)=\tan^{-1} (x^2y)-x-xy^2=0$ $F_x=\dfrac{(2xy)}{1+(x^2y)^2} -1-y^2$ and $F_y=\dfrac{x^2}{1+(x^2y)^2} -2xy$ Use Equation 6, which is: $\dfrac{dy}{dx}=-\dfrac{F_x}{F_y}$ This implies that $\dfrac{dy}{dx}=-\dfrac{\dfrac{(2xy)}{1+(x^2y)^2} -1-y^2}{\dfrac{x^2}{1+(x^2y)^2} -2xy}=\dfrac{(1+y^2)(1+x^4y^2)-2xy}{x^2-2xy(1+x^4y^2)}=\dfrac{1+x^4y^2+y^2+x^4y^4-2xy}{x^2-2xy-2x^5y^3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.