Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.8 Exercises - Page 769: 9

Answer

$R=2$ $I=(-2,2)$

Work Step by Step

Given $$\sum_{n=1}^{\infty} (-1)^n \frac{n^2x^n}{2^n} $$ Since $a_n=(-1)^n \dfrac{n^2x^n}{2^n} $, $a_{n+1}=(-1)^{n+1} \dfrac{(n+1)^2x^{n+1}}{2^{n+1}} $, then \begin{align*} \lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|&=\lim_{n\to\infty}\left|(-1)^{n+1} \dfrac{(n+1)^2x^{n+1}}{2^{n+1}} \dfrac{2^n}{(-1)^nn^2x^n}\right|\\ &=\lim_{n\to\infty}\left| \dfrac{(n+1)^2x }{2n^2 } \right| \\ &=\frac{|x|}{2 }\lim_{n\to\infty} \left( 1+\dfrac{1 }{ n}\right)^2\\ &= \frac{|x|}{2 } \end{align*} By the Ratio Test, the series $\displaystyle\sum_{n=1}^{\infty} (-1)^n \frac{n^2x^n}{2^n} $ converges when $ \frac{|x|}{2 }\lt1\ \Rightarrow (-2,2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.