Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 18

Answer

Horizontal tangents at: $(0,0)$ and $(2,-4)$ Vertical tangents at $(-2,-2)$ and $(2,-4)$

Work Step by Step

1. Calculate $\frac{dy}{dt}$ and $\frac{dx}{dt}$: $\frac{dy}{dt} = \frac{d(t^3-3t^2)}{dt} = 3t^2 - 6t$ $\frac{dx}{dt} = \frac{d(t^3-3t)}{dt} = 3t^2 - 3$ Therefore, $\frac{dy}{dx} = \frac{3t^2 - 6t}{3t^2-3} = \frac{3(t^2-2t)}{3(t^2-1)} = \frac{t^2-2t}{t^2-1}$ 2. There will be a horizontal tangent when $t^2-2t = 0$ and $t^2-1 \neq 0$: $t^2 - 2t = 0$ $t(t-2) = 0$ So: $t = 0$ or $t - 2 = 0 \longrightarrow t = 2$ - Check if $t^2-1 \neq 0$ for these values: $(0)^2 - 1= -1$ $(2)^2-1 = 3$ - They are both valid. 3. There will be a vertical tangent when $t^2-1 = 0$ and $t^2-2t \neq 0$: $t^2 - 1 = 0$ $t^2 = 1$ $t = 1$ or $t = -1$ - Check if $t^2-2t \neq 0$ $(1)^2-2(1) = 1 - 2 = -1$ $(-1)^2 - 2(-1) = 1 + 2 =3$ - They are both valid. 4. Find the points: $t = 0$: $x = (0)^3-3(0)= 0$ $y = (0)^3-3(0)^2= 0$ $t = 2$: $x = (2)^3-3(2)= 2$ $y = (2)^3-3(2)^2= -4$ - Thus, there are horizontal tangents at $(0,0)$ and at $(2,-4)$. $t = 1$: $x = (1)^3-3(1)= -2$ $y = (1)^3-3(1)^2= -2$ $t = -1$: $x = (-1)^3-3(-1)= 2$ $y = (-1)^3-3(-1)^2= -4$ - Thus, there are vertical tangents at $(-2,-2)$ and at $(2,-4)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.