Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 675: 34

Answer

The area of the region enclosed by the asteroid: $$ x=a \cos^{3}\theta, y=a \sin^{3}\theta, $$ is given by $$ \begin{split} A&=4 \int_{0}^{a} y d x\\ &=4 \int_{x / 2}^{0} a \sin ^{3} \theta\left(-3 a \cos ^{2} \theta \sin \theta\right) d \theta \\ &=\frac{3}{8} \pi a^{2} . \end{split} $$

Work Step by Step

The area of the region enclosed by the asteroid: $$ x=a \cos^{3}\theta, y=a \sin^{3}\theta, $$ is given by $$ \begin{split} A&=4 \int_{0}^{a} y d x\\ &=4 \int_{x / 2}^{0} a \sin ^{3} \theta\left(-3 a \cos ^{2} \theta \sin \theta\right) d \theta \\ &=12 a^{2} \int_{0}^{\pi / 2} \sin ^{4} \theta \cos ^{2} \theta d \theta . \\ &=12 a^{2} \int_{0}^{\pi / 2} \int \sin ^{4} \theta \cos ^{2} \theta d \theta \\ &=12 a^{2} \int_{0}^{\pi / 2} \sin ^{2} \theta\left(\frac{1}{4} \sin ^{2} 2 \theta\right) d \theta\\ &=12 a^{2} \frac{1}{8} \int_{0}^{\pi / 2} (1-\cos 2 \theta) \sin ^{2} 2 \theta d \theta \\ &=12 a^{2} \frac{1}{8} \int_{0}^{\pi / 2} \left[\frac{1}{2}(1-\cos 4 \theta)-\sin ^{2} 2 \theta \cos 2 \theta\right] d \theta \\ &=12 a^{2} \left[ \frac{1}{16} \theta-\frac{1}{4} \sin 4 \theta-\frac{1}{48} \sin ^{3} 2 \theta\right]_{0}^{\pi / 2} \\ & =12 a^{2} \left[ \frac{\pi}{32} \right]\\ &=\frac{3}{8} \pi a^{2} . \end{split} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.