Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 86

Answer

L'Hospital's rule applies, the limit diverges to $-\infty$

Work Step by Step

By Theorem 10.2 (see section 10-3 ), we can calculate this limit by ignoring all powers of $x$ except the highest in both the numerator and denominator. $\displaystyle \lim_{x\rightarrow-\infty}\frac{2x^{4}+20x^{3}}{1000x^{3}+6}$ = $\displaystyle \lim_{x\rightarrow-\infty}\frac{2x^{4}}{1000x^{3}}$ = $\displaystyle \lim_{x\rightarrow-\infty}\frac{x^{4}}{500x^{3}}$ This limit has form $\displaystyle \frac{\infty}{\infty}$, L'Hospital's rule applies. (*) $= \displaystyle \lim_{x\rightarrow-\infty}\frac{[x^{4}]^{\prime}}{[500x^{3}]^{\prime} }= \displaystyle \lim_{x\rightarrow-\infty}\frac{4x^{3}}{1500x^{2} }= \displaystyle \qquad(\frac{\infty}{\infty},\ LH)$ $= \displaystyle \lim_{x\rightarrow-\infty}\frac{4(3x^{2})}{1500(2x) }= \displaystyle \lim_{x\rightarrow-\infty}\frac{x^{2}}{250x }= \displaystyle \qquad(\frac{\infty}{\infty},\ LH)$ $= \displaystyle \lim_{x\rightarrow-\infty}\frac{2x}{250 }$ diverges to $-\infty $ (*) We did not need to apply the LH rule here. We could have just reduced the $x^{3}$ factors and arrived at the same answer.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.