Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 535: 40

Answer

$$ \int_{0}^{1} \frac{e^{1 / x}}{x^{3}} d x $$ Observe that the given integral is improper because $ f(x)= \frac{e^{1 / x}}{x^{3}} $ has the vertical asymptote $x =0 $. The infinite discontinuity occurs at the left endpoint of $ [0, 1] $. The given improper integral $$ \int_{-1}^{0} \frac{e^{1 / x}}{x^{3}} d x= \infty $$ is divergent

Work Step by Step

$$ \int_{0}^{1} \frac{e^{1 / x}}{x^{3}} d x $$ Observe that the given integral is improper because $ f(x)= \frac{e^{1 / x}}{x^{3}} $ has the vertical asymptote $x =0 $. Since the infinite discontinuity occurs at the left endpoint of $ [0, 1] $ , we must use part (b) of Definition 3 : $$ \begin{split} \int_{0}^{1} \frac{e^{1 / x}}{x^{3}} d x & = \lim _{t \rightarrow 0 ^{+}} \int_{t}^{1} \frac{e^{1 / x}}{x^{3}} d x \\ & =\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{1}{x} e^{1 / x} \cdot \frac{1}{x^{2}} d x \\ & =\lim _{t \rightarrow 0^{+}} \int_{1 / t}^{1 } u e^{u}(-d u) \quad\left[\begin{array}{c}{u=1 / x} \\ {d u=-d x / x^{2}}\end{array}\right] \\ & =-\lim _{t \rightarrow 0^{+}} \int_{1 / t}^{1} u e^{u}(d u), \quad\quad \text{integration by parts } \\ & =-\lim _{t \rightarrow 0^{+}}\left[(u-1) e^{u}\right]_{1 / t}^{1} \\ & = \lim _{t \rightarrow 0^{+}}\left[0 +\left(\frac{1}{t}-1\right) e^{1 / t}\right] \\ & =\lim _{s \rightarrow \infty}(s-1) e^{s} , \quad\quad[s=1 / t] \\ & = \infty \end{split} $$ Thus the given improper integral $$ \int_{0}^{1} \frac{e^{1 / x}}{x^{3}} d x = \infty $$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.