Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 535: 56

Answer

$$ \int_{2}^{\infty} \frac{d x}{x\sqrt{x^{2}-4}} $$ The given improper integral is convergent and its value is $$ \int_{2}^{\infty} \frac{d x}{x\sqrt{x^{2}-4}}=\frac{\pi}{4} $$

Work Step by Step

$$ \int_{2}^{\infty} \frac{d x}{x\sqrt{x^{2}-4}} $$ The given improper integral can be expressed as a sum of improper integrals of Type 2 and Type 1 as follows: $$ \int_{2}^{\infty} \frac{d x}{x\sqrt{x^{2}-4}}=\int_{2}^{3} \frac{d x}{x\sqrt{x^{2}-4}}+\int_{3}^{\infty} \frac{d x}{x\sqrt{x^{2}-4}} $$ Observe that the first integral is improper because $ f(x)= \frac{1}{x\sqrt{x^{2}-4}} $ has the vertical asymptote $ x =2 $. Since the infinite discontinuity occurs at the left endpoint of $ [2,3] $ $$ \begin{split} \int_{2}^{\infty} \frac{d x}{x\sqrt{x^{2}-4}} &=\int_{2}^{3} \frac{d x}{x\sqrt{x^{2}-4}}+\int_{3}^{\infty} \frac{d x}{x\sqrt{x^{2}-4}}\\ &=\lim _{t \rightarrow 2^{+}} \int_{t}^{3} \frac{d x}{x\sqrt{x^{2}-4}} +\lim _{t \rightarrow \infty}\int_{3}^{t} \frac{d x}{x\sqrt{x^{2}-4}} \quad (1) \end{split} $$ Now $$ \begin{split} \int \frac{d x}{x\sqrt{x^{2}-4}}&=\int \frac{d x}{x\sqrt{x^{2}-4}} \\ & \quad\quad\left[\begin{array}{c}{x=2\sec u, \text {where }} \\ {0 \leq u \lt \frac{\pi}{2}, \text {or } \pi \leq u \lt \frac{3\pi}{2}}\end{array}\right] \\ & =\int \frac{2 \sec u \tan u d u}{2\sec u. 2 \tan u} \\ & =\frac{1}{2}u +C\\ &=\frac{1}{2} \sec^{-1}(\frac{1}{2}x) +C \\ \end{split} $$ substituting in Eq. (1 ) we obtain that, $$ \begin{split} \int_{2}^{\infty} \frac{d x}{x \sqrt{x^{2}-4}} &=\lim _{t \rightarrow 2^{+}}\left[\frac{1}{2} \sec ^{-1}\left(\frac{1}{2} x\right)\right]_{t}^{3}+\lim _{t \rightarrow \infty}\left[\frac{1}{2} \sec ^{-1}\left(\frac{1}{2} x\right)\right]_{3}^{t} \\ &=\frac{1}{2} \sec ^{-1}\left(\frac{3}{2}\right)-0+\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{1}{2} \sec ^{-1}\left(\frac{3}{2}\right) \\ &=\frac{\pi}{4}. \end{split} $$ The given improper integral is convergent and its value is $$ \int_{2}^{\infty} \frac{d x}{x\sqrt{x^{2}-4}}=\frac{\pi}{4}. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.