Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises: 47

Answer

$$\int\frac{1-\tan^2x}{\sec^2x}dx=\frac{1}{2}\sin2x+C$$

Work Step by Step

$$A=\int\frac{1-\tan^2x}{\sec^2x}dx$$ $$A=\int\frac{1-\frac{\sin^2 x}{\cos^2 x}}{\frac{1}{\cos^2 x}}dx$$ $$A=\int\frac{\frac{\cos^2 x-\sin^2 x}{\cos^2 x}}{\frac{1}{\cos^2 x}}dx$$ $$A=\int\frac{(\cos^2 x-\sin^2 x)\cos^2 x}{\cos^2 x}dx$$ $$A=\int(\cos^2 x-\sin^2 x)dx$$ $$A=\int\cos2x dx$$ (for $\cos2x=\cos^2 x-\sin^2 x$) $$A=\frac{1}{2}\int\cos2x d(2x)$$ $$A=\frac{1}{2}\sin2x+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.