Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 485: 69

Answer

Using trig identities it can be proved that $$\int_{-\pi}^\pi{\cos mx \cos nx}dx $$ equal $\pi$ if $ m=n$ and equal 0 if $m\ne n$

Work Step by Step

$$\int_{-\pi}^\pi{\cos mx \cos nx}dx $$ Using the trig identity $$\int_{-\pi}^\pi{\cos mx \cos nx}dx = \frac{1}{2}\int_{-\pi}^\pi{(\cos (m-n)x +\cos (m+n)x) dx}$$ since Cosine is an even function we can write $\int_{-\pi}^\pi{\cos x dx}=2\int_{0}^\pi{\cos x dx} $ the integral becomes $$ \int_{0}^\pi{\cos (m-n)xdx} +\int_{0}^\pi{\cos (m+n)xdx}$$ hence solving the integrals give us $$[\frac{1}{m-n}\sin(m-n)x +\frac{1}{m+n}\sin(m+n)x]^{\pi}_{0}$$ which equal $$\frac{1}{m-n}\sin(m-n)\pi + \frac{1}{m+n}\sin(m+n)\pi$$ Since $\sin k \pi x =0$ where k is any integer then the integral equals zero but this argument doesn't work when m=n we know that the limit $$\lim\limits_{x \to 0}{\frac{\sin x}{x}}=1$$ then if m=n then m-n=0 hence we can write $$\lim\limits_{(m-n)\pi \to 0}\pi(\frac{1}{(m-n)\pi}\sin(m-n)\pi )=\pi$$ then if m=n the integral equal $\pi$ and if $m\ne n$ the integral equal 0
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.