Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Problems Plus - Problems - Page 541: 2

Answer

$$ \int \frac{1}{x^{7}-x} d x=\frac{1}{6} \ln \left|\frac{x^{6}-1}{x^{6}}\right|+C $$ where $C$ is an arbitrary constant.

Work Step by Step

$$ \begin{aligned} \int \frac{1}{x^{7}-x} d x &=\int \frac{d x}{x\left(x^{6}-1\right)}\\ &=\int \frac{x^{5}}{x^{6}\left(x^{6}-1\right)} d x \\ & \quad \quad \quad\left[\begin{array}{c}{ \text{Let }u=x^{6}} \\ {\text{ so that } d u=6 x^{5} d x}\end{array}\right] , \text{Then } \\ &=\frac{1}{6} \int \frac{1}{u(u-1)} d u \quad\quad \quad\quad(1) \end{aligned} $$ Now, decompose $\frac{1}{u(u-1)}$ into its partial fractions as follows, $$ \frac{1}{u(u-1)} =\frac{A}{u} + \frac{B}{(u-1)} $$ $\Rightarrow \quad 1=A(u-1)+Bu= (A+B)u -A $ by comparison of the coefficients we get $A=-1, B=1.$ so $$ \frac{1}{u(u-1)} =\frac{-1}{u} + \frac{1}{(u-1)} \quad\quad (2) $$ substituting from Eq. (2) into Eq. (1) we get $$ \begin{aligned} \int \frac{1}{x^{7}-x} d x &=\frac{1}{6} \int \frac{1}{u(u-1)} d u\\ \\ &=\frac{1}{6} \int\left(\frac{1}{u-1}-\frac{1}{u}\right) d u\\ &=\frac{1}{6}(\ln |u-1|-\ln |u|)+C \\ &=\frac{1}{6} \ln \left|\frac{u-1}{u}\right|+C\\ &=\frac{1}{6} \ln \left|\frac{x^{6}-1}{x^{6}}\right|+C \end{aligned} $$ Thus the given integral is: $$ \int \frac{1}{x^{7}-x} d x=\frac{1}{6} \ln \left|\frac{x^{6}-1}{x^{6}}\right|+C $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.